
CONTENTS 1

Ogen: An Overlapping Grid Generator for Overture

William D. Henshaw 1

CASC: Centre for Applied Scientific Computing2

Lawrence Livermore National Laboratory
Livermore, CA, 94551
henshaw@llnl.gov
http://www.llnl.gov/casc/people/henshaw
http://www.llnl.gov/casc/Overture

November 2, 2003

UCRL-MA-132237

Abstract:
We describe how to generate overlapping grids for use with Overture using the ogen program. The user must first generate
Mappings to describe the geometry (a set of overlapping grids whose union covers the domain). The overlapping grid then is
constructed using the Ogen grid generator. This latter step consists of determining how the different component grids
interpolate from each other, and in removing grid points from holes in the domain, and removing unnecessary grid points in
regions of excess overlap. This document includes a description of commands, presents a series of command files for
generating various overlapping grids and describes the overlapping grid algorithm. The ogen program can also be used to
build unstructured hybrid grids where the overlap is replaced by an unstructured grid.

Contents

1 Introduction 3

2 Commands 3
2.1 Commands for ogen . 3
2.2 Commands when creating Mappings . 3

3 Things you should know to make an overlapping grid 5
3.1 Boundary conditions . 5
3.2 Share flag . 6
3.3 Turning off the cutting of holes . 6
3.4 Turning off interpolation between grids . 6
3.5 Implicit versus explicit interpolation . 6

4 Examples 8
4.1 Square . 8
4.2 Stretched Annulus . 9
4.3 Cylinder in a channel . 10

1This work was partially supported by grant N00014-95-F-0067 from the Office of Naval Research
2Management prefers the spelling ‘Center’

CONTENTS 2

4.4 Cylinder in a channel, cell-centered version . 11
4.5 Cylinder in a channel, fourth-order version . 12
4.6 Cylinder in a channel, multigrid version . 13
4.7 Inlet-outlet . 14
4.8 Valve . 19
4.9 NACA airfoil . 21
4.10 Hybrid grid for the inlet-outlet . 23
4.11 Stretched cube . 25
4.12 Sphere in a box . 26
4.13 Sphere in a tube . 28
4.14 Intersecting pipes . 30
4.15 Body Of Revolution . 32
4.16 3D valve . 34
4.17 Adding new grids to an existing overlapping grid. 36
4.18 Incrementally adding grids to an overlapping grid. 37
4.19 Other sample command files and grids . 39

5 Mixed physical-interpolation boundaries, making a c-grid, h-grid or block-block grid 47
5.1 Automatic mixed-boundary interpolation . 47
5.2 Manual specification of mixed-boundary interpolation points . 47
5.3 Spitting a grid for interpolation of a grid to itself . 48

6 Manual Hole Cutting and Phantom Hole Cutting 51

7 Trouble Shooting 52
7.1 Failure of explicit interpolation . 52
7.2 Tips . 54

8 Adding user defined Mapping’s 55

9 Overlapping Grid Generator: Ogen 57
9.1 Command descriptions . 57

9.1.1 Interactive updateOverlap . 57
9.1.2 Non-interactive updateOverlap . 57
9.1.3 Moving Grid updateOverlap . 57

9.2 Algorithm . 59
9.3 Hole cutting algorithm . 59
9.4 Finding exterior points by ray tracing . 60
9.5 Adjusting grid points for the boundary mismatch problem . 62
9.6 Refinement Grids . 64
9.7 Improved Quality Interpolation . 65

9.7.1 Note: . 65

10 Treatment of nearby boundaries and the boundaryDiscretisationWidth 67

11 Adaptive Mesh Refinement 69
11.1 The algorithm for updating refinement meshes added to an overlapping grid. 69
11.2 Example: Circle in a Channel . 71
11.3 Example: Valve . 74

1 INTRODUCTION 3

1 Introduction

The ogen program can be used to interactively generate overlapping grids.
The basic steps to follow when creating an overlapping grid are

• create mappings that cover a domain and overlap where they meet.

• generate the overlapping grid (ogen calls the grid generator Ogen).

• save the grid in a data-base file.

The ogen program is found in the Overture/bin directory. Just type ogen to get started. You can also type ‘ogen
noplot’ in which case ogenwill run without graphics. This is useful if you just want to execute a command file to regenerate
a grid – running without graphics is faster. If you have a command file, example.cmd, then you can type ‘ogen exam-
ple.cmd’ or ‘ogen example’ (a .cmd will automatically be added) to run the commands in the file. To run without
graphics type ‘ogen noplot example’.

Once you have made a grid and saved it in a data-base file (named myGrid.hdf, for example) you can look at it using the
command Overture/bin/plotStuff myGrid.hdf (or just Overture/bin/plotStuff myGrid).

Figure 1 shows a snap-shot of ogen running.
Other documents of interest that are available through the Overture home page are

• Mapping class documentation : mapping.tex, [2]. Many of the mappings that are used to create an overlapping grid
are documented here.

• Interactive plotting : PlotStuff.tex, [3].

2 Commands

2.1 Commands for ogen

The commands in the initial ogen menu are

create mappings : create mappings to represent the geometry. See section (2.2).

generate an overlapping grid : once mappings have been created an overlapping grid can be generated with this option. This
will call the Ogen grid generator. See section (9.1) for a list of the commands available with the grid generator.

make an overlapping grid : this calls the old Cgsh grid generator, the original Overture grid generator.

save and overlapping grid : Save an overlapping grid in a data base file.

2.2 Commands when creating Mappings

The basic commands available from the create mappingsmenu option are (this list will in general be out of date so you are
advised to run ogen to see the currently available options). Most of these commands simply create a new Mapping and call the
update function for that Mapping. Descriptions of the Mapping’s referred to here can be found in the mapping documentation
[2].

help : output minimal help.

1D Mappings :

line : Build a line in 1D. This can be used for a 1D overlapping grid. Reference LineMapping.

stretching function : Reference StretchMapping.

spline (1D) : Reference SplineMapping.

2D Mappings :

Airfoil : Build a two-dimensional airfoil from various choices including the NACA 4 digit series airfoils. Reference
AirfoilMapping.

Annulus : Reference AnnulusMapping.

2 COMMANDS 4

Circle or ellipse : Reference CircleMapping.

DataPointMapping : Build a new Mapping from a set of discrete data points. The data points may be read from a
plot3d file. Reference DataPointMapping.

line (2D) : Reference LineMapping.

nurbs (curve) : build a NURBS (a type of spline) curve or surface from control points or by interpolating data points.
Reference NurbsMapping.

rectangle : Reference SquareMapping.

SmoothedPolygon : Build a grid or curve with a boundary that is a polygon with smoothed out corners. Reference
SmoothedPolygonMapping.

spline : Reference SplineMapping.

tfi : Build a new Mapping from existing curves or surfaces using transfinite interpolation (Coon’s patch). Reference
TFIMapping.

3D Mappings :

Box : Reference BoxMapping.

Cylinder : Reference CylinderMapping.

Circle or ellipse (3D) : Reference CircleMapping.

CrossSection : Reference CrossSectionMapping.

DataPointMapping : Build a new Mapping from a set of discrete data points. The data points may be read from a
plot3d file. Reference DataPointMapping.

line (3D) : Reference LineMapping.

nurbs (surface) :build a NURBS (a type of spline) curve or surface from control points or by interpolating data points.
Reference NurbsMapping.

plane or rhombus : Reference PlaneMapping.

Sphere : Reference SphereMapping.

spline (3D) : Reference SplineMapping.

tfi : Build a new Mapping from existing curves or surfaces using transfinite interpolation (Coon’s patch). Reference
TFIMapping.

transform :

body of revolution : create a body of revolution from a two-dimensional Mapping. Reference RevolutionMapping.

elliptic : generate an elliptic grid on an existing grid in order to redistribute grid points. Reference Elliptic-
Transform.

fillet : Build a fillet surface to join two intersecting surfaces. Reference FilletMapping.

hyperbolic : Reference HyperbolicMapping.

hyperbolic surface : Reference HyperbolicSurfaceMapping.

intersection : Determine the intersection curve between two intersecting surfaces. Reference Intersection-
Mapping.

mapping from normals : Generate a new Mapping by extending normals from a curve or a surface. Reference Nor-
malMapping.

reparameterize : reparameterize an existing Mapping by

1. restricting the domain space to a sub-rectangle (this would be used to create an refinement patch on an adaptuve
grid)

2. remove a polar singularity by creating a new patch with an orthographic transform.

Reference ReparameterizationTransform, OrthographicTransform and Restriction-
Mapping.

rotate/scale/shift : transform an existing Mapping. Reference MatrixMapping.

3 THINGS YOU SHOULD KNOW TO MAKE AN OVERLAPPING GRID 5

stretch coordinates : stretch (cluster) the grid points in the coordinate directions. Reference StretchTransform
and StretchMapping.

change :

change a mapping : Make changes to an existing Mapping.

copy a mapping : Make a copy of an existing Mapping.

delete a mapping : delete an existing Mapping.

data base :

open a data-base : open an Overture data-base file (new or old).

get from the data-base : read Mapping’s from the data-base.

put to the data-base : save a Mapping in the data-base.

close the data-base : close the data-base.

save plot3d file : write a plot3d file.

read from file :

read plot3d file : read a plot3d formatted file and extract the grids. Each grid becomes a DataPointMapping.

read iges file : *experimental* read an IGES (Initial Graphics Exchange Specification) file such as created by
pro/ENGINEER and build NURBS and trimmed NURBS found in the file.

read overlapping grid file : read an existing overlapping grid data base file and extract all the Mapping’s from it. These
Mappings can then be changed.

view mappings : view the currently defined Mappings.

check mapping : check a Mapping to see that it is defined properly. This is normally only done when one defines a new
Mapping.

exit this menu :

3 Things you should know to make an overlapping grid

Here are some things that you will need to know when building overlapping grids. The examples that follow will demonstrate
all of these ideas.

3.1 Boundary conditions

Each side of each component grid must be given a boundary condition value. These boundary conditions are essential since
they indicate whether a boundary is a physical boundary (a value greater than 0), an interpolation boundary (a value equal to
zero) or a side that is has a periodic boundary condition (a value less than zero). The boundary condition values are stored in
an array as

boundaryCondition(side, axis) =

> 0 physical boundary

= 0 interpolation boundary

< 0 periodic boundary

boundaryCondition(0, 0) = left

boundaryCondition(1, 0) = right

boundaryCondition(0, 1) = bottom

boundaryCondition(1, 1) = top

boundaryCondition(0, 2) = front (3D)

boundaryCondition(1, 2) = back (3D)

where side=0,1 and axis=0,1 in 2D, or axis=0,1,2 in 3D, indicates the face of the the grid. Note that each grid is a
mapping from the unit square or unit cube to a physical domain – the terms left, right, bottom, top, front and back refer to the

3 THINGS YOU SHOULD KNOW TO MAKE AN OVERLAPPING GRID 6

sides of the unit square or cube. When you enter the boundary condition values (when changing them in a mapping) you should
enter them in the order: left, right, bottom, top, front, back.

The grid generator uses physical boundaries to cut holes in other grids that happen to cross that physical boundary. See, for
example, the “cylinder in a channel example” where the rectangular grid has a hole cut out of it. Interpolation boundaries are
non-physical boundaries where the grid generator will attempt to interpolate the points from other component grids. A periodic
boundary can be either be a branch cut (as on an annulus) or it can indicate a periodic domain (as with a square where the right
edge of the square is to be identified with the left edge).

3.2 Share flag

The share flag is used to indicate when two different component grids share a common boundary (see the “inlet outlet” example,
section (4.7). The grid generator uses the share flag so that a boundary of one component grid will not accidently cut a hole
in another grid when the two grids are actually part of the same boundary. This could happen since, due to inaccuracies in
representing each grid, it may seem that the boundary on one grid lies inside or outside the other grid (even though they are
meant to be the same boundary curve).

The share flag is saved in an array that is the same shape as the boundary condition array

share(side, axis) > 0 a code that should be the same on all shared boundaries.

share(0, 0) = left

share(1, 0) = right

share(0, 1) = bottom

share(1, 1) = top

share(0, 2) = front (3D)

share(1, 2) = back (3D)

where side=0,1 and axis=0,1 in 2D, or axis=0,1,2 in 3D, indicates the face of the the grid.
Thus the share flags on all grid faces that belong to the same boundary should be given the same share value. This could

be accomplished by setting all share values to 1 say, although this is slightly dangerous as the grid generator could make a
mistake. It is better to use a different positive integer for each different boundary.

3.3 Turning off the cutting of holes

By default, the overlapping grid generator will use any physical boundary (a side of a grid with a positive boundaryCondi-
tion to try and cut holes in any other grid that lies near the physical boundary. Thus in the “cylinder in a channel example”
section (4.3) the inner boundary of the annulus cuts a hole in the rectangular grid. Sometimes, as in the “inlet outlet” example,
section (4.7), one does not want this to happen. In this case it is necessary to explicitly specify which grids are allowed to
cut holes in which other grids. This can be done through in the change parameters option with the prevent hole
cutting option, see section the “inlet outlet” example, (4.7).

3.4 Turning off interpolation between grids

By default all grids can interpolate from all other grids. This default can be changed and you may specify which grids may
interpolate from which other grids. This option can be used, for example, to build grids for two disjoint domains that match
along a boundary as shown in figure (22).

3.5 Implicit versus explicit interpolation

There are two types of interpolation, explicit and implicit. Explicit interpolation means that a point that is interpolated will
only use values on other grids that are not interpolation points themselves. This means that will the default 3 point interpolation
the amount of overlap must be at least 1.5 grid cells wide. With explicit interpolation the interpolation equations can be solved
explicitly (and this faster).

With implicit interpolation the points used in the interpolation stencil may themselves be interpolation points. This means
that will the default 3 point interpolation the amount of overlap must be at least .5 grid cells wide. Thus implicit interpolation
is more likely to give a valid grid since it requires less overlap. With implicit interpolation the interpolation equations are a
coupled system that must be solved. This is a bit slower but the Overture interpolation function handles this automatically.

3 THINGS YOU SHOULD KNOW TO MAKE AN OVERLAPPING GRID 7

Figure 1: A snapshot of ogen

4 EXAMPLES 8

4 Examples

In this section we describe a number of command files that can be used to create various overlapping grids. During an interactive
session a command file can be saved, see the option ‘log commands to file’ in the file pull-down menu. By default
the command file ogen.cmd is automatically saved. The command file will record all the commands that are issued. The
command file can be later read in, using ‘read command file’ in the file pull-down menu, and the commands will
be executed. You can also type ‘ogen example.cmd’ to run the command file named example.cmd with graphics or
‘ogen noplot example.cmd’ to run without graphics.

The command file can be edited and changed. Once a complicated grid has been created it is usually easiest to make minor
changes by editing the command file. The pause command can be added to the command file which will cause the program
to pause at that point and wait for an interactive response – one can then can either continue or break.

4.1 Square

Here is a command file to create a square. (file Overture/sampleGrids/square5.cmd) We first make a mapping
for the square and assign various parameters such as the number of grid points and the boundary conditions. Any positive
number for the boundary condition indicates a physical boundary. Next the overlapping grid generator is called (make an
overlapping grid) to make an overlapping grid (which is trivial in this case). Finally the overlapping grid is saved in a
data-base file. The data-base file is an HDF formatted file. HDF is the the Hierarchical Data Format (HDF) from the National
Centre for Super-Computing Applications (NCSA). You can look at the data base file created here by typing plotStuff
square5.hdf (or just plotStuff square5) where plotStuff is found in Overture/bin.

1 * make a simple square
2 create mappings
3 rectangle
4 mappingName
5 square
6 lines
7 6 6
8 boundary conditions
9 1 1 1 1

10 exit
11 exit
12 *
13 generate an overlapping grid
14 square
15 done
16 change parameters
17 ghost points
18 all
19 2 2 2 2 2 2
20 exit
21 compute overlap
22 exit
23 *
24 save an overlapping grid
25 square5.hdf
26 square5
27 exit

An “overlapping grid” that is just a square

4 EXAMPLES 9

4.2 Stretched Annulus

FAQ : What the heck is going on with the stretching function?! (F. Olsson-Hector)

Answer: Here is a command file to create an annulus with stretching. (file Over-
ture/sampleGrids/stretchedAnnulus.cmd) Grid lines can be stretched in the coordinate directions (i.e. in
the unit-square coordinates). When grid lines are stretched, as in the example below, the graphics screen will show one of the
following

• The mapping to be stretched (annulus)

• The unit square to be stretched.

• The one dimensional stretching function.

The stretching functions are described in the documentation on Mapping’s [2].

1 *
2 * Create an annulus and stretch the grid lines
3 *
4 create mappings
5 * create an Annulus
6 Annulus
7 lines
8 41 11
9 exit

10 * stretch the grid lines
11 stretch coordinates
12 transform which mapping?
13 Annulus
14 stretch
15 specify stretching along axis=0
16 * choose a layer stretching a*tanh(b*(r-c))
17 layers
18 1
19 * give a,b,c in above formula
20 1. 10. .5
21 exit
22 specify stretching along axis=1
23 layers
24 1
25 1. 5. 0.
26 exit
27 exit
28 exit
29 exit this menu
30 *
31 * make an overlapping grid
32 *
33 generate an overlapping grid
34 stretched-Annulus
35 done
36 compute overlap
37 exit
38 *
39 * save as an hdf file
40 *
41 save an overlapping grid
42 stretchedAnnulus.hdf
43 grid
44 exit

An annulus with stretching

For the pundits: The stretched annulus is a StretchTransform Mapping which is a composition of the Stretched-
Square Mapping and the Annulus Mapping. The StretchedSquare uses the Stretch Mapping where the actual one
dimensional stretching functions are defined.

4 EXAMPLES 10

4.3 Cylinder in a channel

Here is a command file to create a cylinder in a channel. (file Overture/sampleGrids/cic.cmd) In this case we
make two mappings, one a background grid and one an annulus. The boundary conditions on the annulus are set so that
the outer boundary is an interpolation boundary (=0) while the boundary conditions on the branch cut are −1 to indicate a
periodic boundary. We show two overlapping grids, one made with implicit interpolation (default) and one made with explicit
interpolation. The latter has a bigger region of overlap.

1 *
2 * circle in a channel
3 *
4 create mappings
5 *
6 rectangle
7 set corners
8 -2. 2. -2. 2.
9 lines

10 32 32
11 boundary conditions
12 1 1 1 1
13 mappingName
14 square
15 exit
16 *
17 Annulus
18 lines
19 33 7
20 * centre
21 * 0. 1.
22 boundary conditions
23 -1 -1 1 0
24 exit
25 *
26 exit
27 generate an overlapping grid
28 square
29 Annulus
30 done
31 change parameters
32 * choose implicit or explicit interpolation
33 * interpolation type
34 * implicit for all grids
35 ghost points
36 all
37 2 2 2 2 2 2
38 exit
39 * display intermediate results
40 compute overlap
41 exit
42 *
43 save an overlapping grid
44 cic.hdf
45 cic
46 exit
47

An overlapping grid for a cylinder in a channel with implicit interpolation

An overlapping grid for a cylinder in a channel with explicit interpolation

4 EXAMPLES 11

4.4 Cylinder in a channel, cell-centered version

Here we repeat the last example but create a cell-centered grid. In a cell-centered grid the cell-centres of one grid are interpolated
from the cell-centres of another grid. For this reason the cell-centred grid requires slighly more overlap between the component
grids.

1 *
2 * circle in a channel, cell centered grid
3 *
4 create mappings
5 *
6 rectangle
7 set corners
8 -2. 2. -2. 2.
9 lines

10 32 32
11 boundary conditions
12 1 1 1 1
13 mappingName
14 square
15 exit
16 *
17 Annulus
18 lines
19 33 7
20 boundary conditions
21 -1 -1 1 0
22 exit
23 *
24 exit
25 generate an overlapping grid
26 square
27 Annulus
28 done
29 change parameters
30 * make the grid cell-centered
31 cell centering
32 cell centered for all grids
33 exit
34 compute overlap
35 exit
36 *
37 save an overlapping grid
38 cicCC.hdf
39 cicCC
40 exit
41

An overlapping grid for a cylinder in a channel, cell-centered case.

4 EXAMPLES 12

4.5 Cylinder in a channel, fourth-order version

Here we repeat the last example but create a grid appropriate for a fourth-order discretization. We need to increase the discretiza-
tion width to 5 and the interpolation width to 5. This can either be done explicitly or the option “order of accuracy” can
be used. Notice that two lines of interpolation points are generated as required by the wider stencil.

1 *
2 * circle in a channel, for fourth order accuracy. This
3 * can be used with primer/wave
4 *
5 create mappings
6 *
7 rectangle
8 set corners
9 -2. 2. -2. 2.

10 lines
11 129 129
12 boundary conditions
13 1 1 1 1
14 mappingName
15 square
16 exit
17 *
18 Annulus
19 lines
20 161 9
21 outer radius
22 .75
23 boundary conditions
24 -1 -1 1 0
25 exit
26 *
27 exit
28 generate an overlapping grid
29 square
30 Annulus
31 done
32 change parameters
33 * choose implicit or explicit interpolation
34 interpolation type
35 implicit for all grids
36 * explicit for all grids
37 ghost points
38 all
39 2 2 2 2
40 order of accuracy
41 fourth order
42 * we could also do the following:
43 * discretization width
44 * all
45 * 5 5
46 * interpolation width
47 * all
48 * all
49 * 5 5
50 exit
51 compute overlap
52 exit
53 *
54 save an overlapping grid
55 cic.4.hdf
56 cic4
57 exit
58

An overlapping grid for a cylinder in a channel, fourth-order case.

4 EXAMPLES 13

4.6 Cylinder in a channel, multigrid version

Here we make a grid that can be used with a multigrid solver. The only difference in the command file is that we must specify
how many multigrid levels we require. NOTE that since each multigrid level must be a valid overlapping grid you cannot
expect to have more than a few levels. See the examples in the primer for how to access the different multigrid levels in a
CompositeGrid.

1 *
2 * circle in a channel with MG levels
3 *
4 create mappings
5 *
6 rectangle
7 set corners
8 -2. 2. -2. 2.
9 lines

10 45 45
11 boundary conditions
12 1 1 1 1
13 mappingName
14 square
15 exit
16 *
17 Annulus
18 lines
19 65 9
20 boundary conditions
21 -1 -1 1 0
22 exit
23 *
24 exit
25 generate an overlapping grid
26 specify number of multigrid levels
27 2
28 square
29 Annulus
30 done
31 change parameters
32 interpolation type
33 explicit for all grids
34 ghost points
35 all
36 2 2 2 2 2 2
37 exit
38 * pause
39 compute overlap
40 exit
41 save an overlapping grid
42 cicmg.hdf
43 cic
44 exit

An overlapping grid for a cylinder in a channel, multigrid level 0.

An overlapping grid for a cylinder in a channel, multigrid level 1.

4 EXAMPLES 14

4.7 Inlet-outlet

In this example we demonstrate

share flags: to specify that two component grids have sides that belong to the same physical boundary curve. This prevents
one physical boundary from accidently cutting a hole on a grid that shares the same boundary.

no hole cutting: turn off hole cutting to prevent physical boundaries from cutting holes in some other grids.

view mappings: the mappings can be plotted with boundaries coloured by the boundary condition values or coloured by the
share flag values. This allows one to check that the values have been set properly.

This grid is remarkably similar to a grid created by Anders Petersson.
Here is a command file to create the grid for the inlet-outlet example. (file Over-

ture/sampleGrids/inletOutlet.cmd).

1 *
2 * create a grid to demonstrate various features
3 *
4 create mappings
5 * make a back ground grid
6 rectangle
7 set corners
8 0 2. 0 1.
9 lines

10 61 31
11 mappingName
12 backGroundGrid
13 share
14 1 2 3 4
15 exit
16 * make an annulus
17 Annulus
18 centre for annulus
19 1. .5
20 inner radius
21 .2
22 outer radius
23 .4
24 lines
25 41 9
26 mappingName
27 annulus
28 boundary conditions
29 -1 -1 1 0
30 exit
31 * the inlet (on the right) will consist of two
32 * smoothed polygons
33 SmoothedPolygon
34 mappingName
35 inlet-top
36 vertices
37 3
38 2. .85
39 2. .65
40 2.25 .65
41 n-dist
42 fixed normal distance
43 -.175 .2
44 sharpness
45 10.
46 10.
47 10.
48 t-stretch
49 0. 10.
50 1. 10.
51 0. 10.
52 lines
53 25 11
54 boundary conditions

55 0 1 1 0
56 * One boundary here should match one boundary of
57 * the backGroundGrid, while another boundary
58 * should match a boundary on the inlet-bottom.
59 * Set share flag to match corresponding share values
60 share
61 0 5 2 0
62 exit
63 *
64 SmoothedPolygon
65 mappingName
66 inlet-bottom
67 vertices
68 3
69 2. .15
70 2. .35
71 2.25 .35
72 lines
73 25 11
74 n-dist
75 fixed normal distance
76 .175 .2
77 sharpness
78 10.
79 10.
80 10.
81 t-stretch
82 0. 10.
83 1. 10.
84 0. 10.
85 boundary conditions
86 0 1 1 0
87 * One boundary here should match one boundary
88 * of the backGroundGrid, while another boundary
89 * should match a bounbdary on the inlet-bottom.
90 * Set share flag to match corresponding share values
91 share
92 0 5 2 0
93 exit
94 * here is an outlet grid made in the poor man’s way
95 rectangle
96 set corners
97 -.35 .05 .3 .7
98 lines
99 15 15

100 mappingName
101 outlet
102 boundary conditions
103 1 0 1 1
104 exit
105 * now look at the mappings
106 view mappings
107 backGroundGrid
108 annulus

4 EXAMPLES 15

109 inlet-top
110 inlet-bottom
111 outlet
112 *
113 * The grid is plotted with boundaries coloured
114 * by the boundary condition number. Here we
115 * should check that all interpolation boundaries
116 * are 0 (blue), all physical boundaries are positive
117 * and periodic boundaries are black
118 * pause
119 *
120 * now we plot the boundaries by share value
121 * The sides that correspond to the same boundary
122 * should be the same colour
123 colour boundaries by share value
124 * pause
125 erase and exit
126 exit
127 generate an overlapping grid
128 * put the nonconforming grid first to be a lower
129 * priority than the back-ground
130 outlet
131 backGroundGrid
132 annulus
133 inlet-top

134 inlet-bottom
135 done
136 change parameters
137 prevent hole cutting
138 backGroundGrid
139 all
140 outlet
141 all
142 done
143 ghost points
144 all
145 2 2 2 2 2 2
146 exit
147 * display intermediate
148 * set debug parameter
149 * 31
150 compute overlap
151 exit
152 *
153 save an overlapping grid
154 inletOutlet.hdf
155 inletOutlet
156 exit
157

The cell-centred version may be created with Overture/sampleGrids/inletOutlet.cmd.

4 EXAMPLES 16

Figure 2: Inlet-outlet mappings plotted from the “view mappings” menu, showing boundary condition values. Physical bound-
aries have a positive value (1=green), interpolation boundaries have a value of zero (0=blue) and periodic boundaries have a
negative value (shown in black).

4 EXAMPLES 17

Figure 3: Inlet-outlet mappings plotted from the “view mappings” menu, showing shared side values. Grids that share the same
physical boundary should have the same value of the share flag. For example, the two inlet grids on the right share boundaries
with the back-ground grid (value 2=red). The inlet grids also share boundaries with each other (value 5)

4 EXAMPLES 18

Figure 4: Inlet-outlet overlapping grid. To create this grid we had to prevent the background grid from cutting holes in the two
inlet grids (on the right) and the outlet grid on the left. The outlet grid was also prevented from cutting holes in the background
grid.

4 EXAMPLES 19

4.8 Valve

Here is a command file to create a grid around a two-dimensional valve (file Overture/sampleGrids/valve.cmd).

1 *
2 * Create an overlapping grid for a 2D valve
3 *
4 * time to make: old:27s (ultra) new: 4.4s
5 *
6 create mappings
7 *
8 * First make a back-ground grid
9 *

10 rectangle
11 mappingName
12 backGround
13 set corners
14 0 1. 0 1.
15 lines
16 * 41 41
17 * 51 51
18 49 49
19 share
20 1 2 3 4
21 exit
22 *
23 * Now make the valve
24 *
25 SmoothedPolygon
26 mappingName
27 valve
28 vertices
29 * .4 .4 .65 .65 ok
30 * .45 .45 .7 .7 ok
31 * .47 .47 .72 .72 ok
32 * .475 .475 .725 .725 no
33 * .47 .47 .72 .72 last used, ok
34 4
35 0.47 0.
36 0.47 .75
37 0.72 .5
38 0.72 0.
39 n-dist
40 fixed normal distance
41 * .1
42 .05
43 lines
44 * 65 9
45 * 75 9
46 73 9
47 boundary conditions
48 1 1 1 0
49 share
50 3 3 0 0
51 sharpness
52 15
53 15
54 15
55 15
56 t-stretch
57 1. 0.
58 1. 6.
59 1. 4.
60 1. 0.
61 n-stretch
62 1. 4. 0.

63 exit
64 *
65 * Here is the part of the boundary that
66 * the valve closes against
67 *
68 SmoothedPolygon
69 mappingName
70 stopper
71 vertices
72 4
73 1. .5
74 0.75 .5
75 0.5 .75
76 0.5 1.
77 n-dist
78 fixed normal distance
79 * .1
80 .05
81 lines
82 * 61 9
83 * 61 9
84 65 9
85 t-stretch
86 1. 0.
87 1. 5.
88 1. 5.
89 1. 0.
90 n-stretch
91 1. 4. 0.
92 boundary conditions
93 1 1 1 0
94 share
95 2 4 0 0
96 exit
97 exit
98 *
99 * Make the overlapping grid

100 *
101 generate an overlapping grid
102 backGround
103 stopper
104 valve
105 done
106 change parameters
107 ghost points
108 all
109 2 2 2 2 2 2
110 exit
111 * debug
112 * 7
113 * display intermediate results
114 compute overlap
115 * pause
116 exit
117 *
118 * save an overlapping grid
119 save a grid (compressed)
120 valve.hdf
121 valve
122 exit
123

The resulting grid is shown in figure 5. The cell centered version may be created with Over-
ture/sampleGrids/valveCC.cmd.

4 EXAMPLES 20

Figure 5: An overlapping grid for a valve

4 EXAMPLES 21

4.9 NACA airfoil

Here is a command file to create a grid around a two-dimensional NACA0012 airfoil (file Overture/sampleGrids-
/naca0012.cmd). The airfoil curve is created first with the AirfoilMapping (see the Mapping documentation for an
explanation of NACA 4 digit airfoils). This curve is blended with an ellipse (using transfinite interpolation) to make an initial
grid. The transfinite interpolation mapping then then smoothed using elliptic grid generation to form the airfoil grid.

1 *
2 * Make a grid around a NACA0012 airfoil
3 *
4 create mappings
5 *
6 * First make a back-ground grid
7 *
8 rectangle
9 mappingName

10 backGround
11 set corners
12 -1.5 2.5 -1.5 1.5
13 lines
14 41 33 41 31
15 exit
16 * make the NACA0012 airfoil (curve)
17 Airfoil
18 airfoil type
19 naca
20 exit
21 * make an ellipse as an outer boundary
22 Circle or ellipse
23 specify centre
24 .5 .0
25 specify axes of the ellipse
26 1.5 1.
27 exit
28 * blend the airfoil to the ellipse to make a grid
29 tfi
30 choose bottom curve
31 airfoil
32 choose top curve
33 circle
34 boundary conditions
35 -1 -1 1 0
36 lines
37 73 17
38 mappingName
39 airfoil-tfi
40 * pause
41 exit
42 *
43 elliptic
44 *project onto original mapping (toggle)
45 transform which mapping?

46 airfoil-tfi
47 elliptic smoothing
48 * slow start to avoid porblems at trailing edge
49 number of multigrid levels
50 3
51 maximum number of iterations
52 15
53 red black
54 smoother relaxation coefficient
55 .1
56 generate grid
57 * now reset parameters for better convergence
58 maximum number of iterations
59 30
60 smoother relaxation coefficient
61 .8
62 generate grid
63 exit
64 mappingName
65 airfoil-grid
66 * pause
67 exit
68 exit
69 *
70 * make an overlapping grid
71 *
72 generate an overlapping grid
73 backGround
74 airfoil-grid
75 done
76 change parameters
77 ghost points
78 all
79 2 2 2 2 2 2
80 exit
81 compute overlap
82 exit
83 *
84 save an overlapping grid
85 naca0012.hdf
86 naca
87 exit
88
89

The resulting grid is shown in figure 6.

4 EXAMPLES 22

Figure 6: An overlapping grid for a NACA0012 airfoil

4 EXAMPLES 23

4.10 Hybrid grid for the inlet-outlet

Here is a command file to create a hybrid for an inlet-outlet geometry. Overture/sampleGrids-
/inletOutlet.hyb.cmd).

1 *
2 * create a grid to demonstrate various features
3 *
4 create mappings
5 * make a back ground grid
6 rectangle
7 set corners
8 0 2. 0 1.
9 lines

10 61 31
11 mappingName
12 backGroundGrid
13 share
14 1 2 3 4
15 exit
16 * make an annulus
17 Annulus
18 centre for annulus
19 1. .5
20 inner radius
21 .2
22 outer radius
23 .4
24 lines
25 41 9
26 mappingName
27 annulus
28 boundary conditions
29 -1 -1 1 0
30 exit
31 * the inlet (on the right) will consist of two
32 * smoothed polygons
33 SmoothedPolygon
34 mappingName
35 inlet-top
36 vertices
37 3
38 2. .85
39 2. .65
40 2.25 .65
41 n-dist
42 fixed normal distance
43 -.175 .2
44 sharpness
45 10.
46 10.
47 10.
48 t-stretch
49 0. 10.
50 1. 10.
51 0. 10.
52 lines
53 25 11
54 boundary conditions
55 0 1 1 0
56 * One boundary here should match one boundary of
57 * the backGroundGrid, while another boundary
58 * should match a boundary on the inlet-bottom.
59 * Set share flag to match corresponding share values
60 share
61 0 5 2 0
62 exit
63 *
64 SmoothedPolygon
65 mappingName
66 inlet-bottom

67 vertices
68 3
69 2. .15
70 2. .35
71 2.25 .35
72 lines
73 25 11
74 n-dist
75 fixed normal distance
76 .175 .2
77 sharpness
78 10.
79 10.
80 10.
81 t-stretch
82 0. 10.
83 1. 10.
84 0. 10.
85 boundary conditions
86 0 1 1 0
87 * One boundary here should match one boundary
88 * of the backGroundGrid, while another boundary
89 * should match a bounbdary on the inlet-bottom.
90 * Set share flag to match corresponding share values
91 share
92 0 5 2 0
93 exit
94 * here is an outlet grid made in the poor man’s way
95 rectangle
96 set corners
97 -.35 .05 .3 .7
98 lines
99 15 15

100 mappingName
101 outlet
102 boundary conditions
103 1 0 1 1
104 exit
105 * now look at the mappings
106 view mappings
107 backGroundGrid
108 annulus
109 inlet-top
110 inlet-bottom
111 outlet
112 *
113 * The grid is plotted with boundaries coloured
114 * by the boundary condition number. Here we
115 * should check that all interpolation boundaries
116 * are 0 (blue), all physical boundaries are positive
117 * and periodic boundaries are black
118 * pause
119 *
120 * now we plot the boundaries by share value
121 * The sides that correspond to the same boundary
122 * should be the same colour
123 colour boundaries by share value
124 pause
125 erase and exit
126 exit
127 generate a hybrid mesh
128 * put the nonconforming grid first to be a lower
129 * priority than the back-ground
130 outlet
131 backGroundGrid
132 annulus

4 EXAMPLES 24

133 inlet-top
134 inlet-bottom
135 done
136 change parameters
137 prevent hole cutting
138 backGroundGrid
139 all
140 outlet
141 all
142 done
143 exit
144 * display intermediate
145 * set debug parameter

146 * 31
147 compute overlap
148 exit
149 set plotting frequency (<1 for never)
150 -1
151 continue generation
152 exit
153 save grid in ingrid format
154 inletOutlet.hyb.msh
155 exit
156 *
157

Figure 7: A hybrid grid for an inlet-outlet geometry.

4 EXAMPLES 25

4.11 Stretched cube

Here is a command file to create a simple box in 3D with stretched grid lines. (file Overture/sampleGrids/-
stretchedCube.cmd)

1 *
2 * Create a 3D cube with stretched grid lines
3 *
4 create mappings
5 Box
6 exit
7 stretch coordinates
8 stretch
9 * choose a layer stretching a*tanh(b*(r-c))

10 * along axis 0
11 specify stretching along axis=0 (x1)
12 layers
13 1
14 * give a,b,c in above formula
15 1. 10. .5
16 exit
17 * choose a stretching function with 2
18 * layers along axis1
19 specify stretching along axis=1 (x2)
20 layers
21 2
22 * give a,b,c for layer 1
23 1. 10. 0.
24 * give a,b,c for layer 2
25 1. 10. 1.
26 exit
27 exit
28 exit
29 exit this menu
30 generate an overlapping grid
31 stretched-box
32 done
33 compute overlap
34 exit
35 save an overlapping grid
36 stretchedCube.hdf
37 stretchedCube
38 exit

An overlapping grid for a stretched cube.

4 EXAMPLES 26

4.12 Sphere in a box

Here is a command file to create a sphere in a box. The sphere is covered with two orthographic patches, one for the north-pole
and one for the south-pole. (file Overture/sampleGrids/sib.cmd)

1 *
2 * command file to create a sphere in a box
3 *
4 * time to make: 594s new: 3.5
5 * cpu=2s (ov15 sun-ultra optimized)
6 * =.37 (tux50)
7 create mappings
8 * first make a sphere
9 Sphere

10 exit
11 *
12 * now make a mapping for the north pole
13 *
14 reparameterize
15 orthographic
16 specify sa,sb
17 2.5 2.5
18 exit
19 lines
20 15 15 5
21 boundary conditions
22 0 0 0 0 1 0
23 share
24 0 0 0 0 1 0
25 mappingName
26 north-pole
27 exit
28 *
29 * now make a mapping for the south pole
30 *
31 reparameterize
32 orthographic
33 choose north or south pole
34 -1
35 specify sa,sb
36 2.5 2.5
37 exit
38 lines
39 15 15 5

40 boundary conditions
41 0 0 0 0 1 0
42 share
43 0 0 0 0 1 0
44 mappingName
45 south-pole
46 exit
47 *
48 * Here is the box
49 *
50 Box
51 set corners
52 -2 2 -2 2 -2 2
53 lines
54 21 21 21
55 mappingName
56 box
57 exit
58 exit
59 *
60 generate an overlapping grid
61 box
62 north-pole
63 south-pole
64 done
65 change parameters
66 * interpolation type
67 * explicit for all grids
68 ghost points
69 all
70 2 2 2 2 2 2
71 exit
72 compute overlap
73 exit
74 save an overlapping grid
75 sib.hdf
76 sib
77 exit

The resulting grid is shown in figure 8. The cell-centered version can be made with Over-
ture/sampleGrids/sibCC.cmd.

4 EXAMPLES 27

Figure 8: An overlapping grid for a sphere in a box. The sphere is covered with two patches.

Figure 9: An overlapping grid for a sphere in a box. The interpolation points are also shown.

4 EXAMPLES 28

4.13 Sphere in a tube

Here is a command file to create a sphere in a cylindrical tube. The sphere is covered with two orthographic patches, one for the
north-pole and one for the south-pole. The sphere is contained in a tube that is represented as a cylinderical annulus together
with a rectangular box that forms the core of the cylinder. (file Overture/sampleGrids/sphereInATube.cmd)

1 *
2 * command file to create a sphere in cylindrical tube
3 *
4 *
5 create mappings
6 * first make a sphere
7 Sphere
8 exit
9 *

10 * now make a mapping for the north pole
11 *
12 reparameterize
13 orthographic
14 specify sa,sb
15 2.5 2.5
16 exit
17 lines
18 15 15 5
19 boundary conditions
20 0 0 0 0 1 0
21 share
22 0 0 0 0 1 0
23 mappingName
24 north-pole
25 exit
26 *
27 * now make a mapping for the south pole
28 *
29 reparameterize
30 orthographic
31 choose north or south pole
32 -1
33 specify sa,sb
34 2.5 2.5
35 exit
36 lines
37 15 15 5
38 boundary conditions
39 0 0 0 0 1 0
40 share
41 0 0 0 0 1 0
42 mappingName
43 south-pole
44 exit
45 *
46 * Here is the cylinder
47 *
48 * main cylinder
49 Cylinder
50 mappingName
51 cylinder

52 * orient the cylinder so y-axis is axial direction
53 orientation
54 2 0 1
55 bounds on the radial variable
56 .3 .8
57 bounds on the axial variable
58 -1. 1.
59 lines
60 55 21 9
61 boundary conditions
62 -1 -1 2 3 0 4
63 share
64 0 0 2 3 0 0
65 exit
66 * core of the main cylinder
67 Box
68 mappingName
69 cylinderCore
70 specify corners
71 -.5 -1. -.5 .5 1. .5
72 lines
73 19 21 19
74 boundary conditions
75 0 0 2 3 0 0
76 share
77 0 0 2 3 0 0
78 exit
79 * pause
80 *
81 exit
82 generate an overlapping grid
83 cylinderCore
84 cylinder
85 north-pole
86 south-pole
87 done
88 change parameters
89 ghost points
90 all
91 2 2 2 2 2 2
92 exit
93 * display intermediate
94 compute overlap
95 * continue
96 * pause
97 exit
98 save an overlapping grid
99 sphereInATube.hdf

100 sit
101 exit

The resulting grid is shown in figure 10.

4 EXAMPLES 29

Figure 10: An overlapping grid for a sphere in a cylindrical tube

4 EXAMPLES 30

4.14 Intersecting pipes

Here is a command file to create a grid for two intersecting pipes. Each pipe is made from a cylindrical annulus with a
rectangular grid for the core. The pipes intersect using the poor man’s intersection method with non-conforming grids. (A more
refined intersection would use a fillet). The key point here is that the boundaries must not cut holes and so this feature is turned
off. (file Overture/sampleGrids/pipes.cmd)

1 *
2 * Make an overlapping grid for two intersecting pipes
3 * cpu=2s (ov15 sun-ultra optimized)
4 *
5 create mappings
6 * Here is the main pipe
7 Cylinder
8 orientation
9 1 2 0

10 bounds on the radial variable
11 .25 .5
12 bounds on the axial variable
13 -1.5 1.
14 mappingName
15 mainPipe
16 lines
17 25 21 7
18 boundary conditions
19 -1 -1 1 1 0 2
20 share
21 0 0 1 2 0 0
22 exit
23 * Here is the core of the main pipe
24 * note: there is trouble if corner of core just
25 * sticks outside the main pipe -- hole cutter
26 * misses. (happens with core half width= .3)
27 Box
28 specify corners
29 -1.5 -.25 -.25 1. .25 .25
30 lines
31 21 9 9
32 boundary conditions
33 1 1 0 0 0 0
34 mappingName
35 mainCore
36 share
37 1 2 0 0 0 0
38 exit
39 * Here is the branch pipe
40 Cylinder
41 orientation
42 2 0 1
43 bounds on the radial variable
44 .2 .4
45 bounds on the axial variable
46 .25 1.25
47 lines
48 23 11 7 21 11 7
49 boundary conditions

50 -1 -1 0 1 0 2
51 share
52 0 0 0 3 0 0
53 mappingName
54 branchPipe
55 exit
56 * Here is the core of the branch pipe
57 Box
58 specify corners
59 -.25 .25 -.25 .25 1.25 .25
60 lines
61 9 15 9
62 boundary conditions
63 0 0 0 1 0 0
64 share
65 0 0 0 3 0 0
66 mappingName
67 branchCore
68 exit
69 exit
70 generate an overlapping grid
71 branchCore
72 branchPipe
73 mainCore
74 mainPipe
75 done
76 change parameters
77 prevent hole cutting
78 all
79 all
80 done
81 allow hole cutting
82 branchPipe
83 branchCore
84 mainCore
85 mainPipe
86 done
87 ghost points
88 all
89 2 2 2 2 2 2
90 exit
91 * pause
92 compute overlap
93 exit
94 save an overlapping grid
95 pipes.hdf
96 pipes
97 exit

The resulting grid is shown in figure 11.

4 EXAMPLES 31

Figure 11: An overlapping grid for two intersecting pipes

4 EXAMPLES 32

4.15 Body Of Revolution

Here is a command file to create a grid for a body of revolution. The body of revolution is created by revolving a two-
dimensional grid about a given line. The two dimensional grid in this case is created with the SmoothedPolygon Mapping.
The body of revolution has a spherical polar singularity at both ends. We generate a new Mapping to cover each singularity.
We reparameterize the ends using an orthographic transformation. (file Overture/sampleGrids/revolve.cmd)

1 *
2 * Create a cylindrical body of revolution
3 * from a Smoothed Polygon
4 * cpu=48s (ov15 sun-ultra optimized)
5 create mappings
6 SmoothedPolygon
7 vertices
8 7
9 -1. 0.

10 -1. .25
11 -.8 .5
12 0. .5
13 .8 .5
14 1. .25
15 1. 0.
16 n-dist
17 fixed normal distance
18 .1
19 n-dist
20 fixed normal distance
21 .4
22 corners
23 specify positions of corners
24 -1. 0.
25 1. 0
26 -1.4 0.
27 1.4 0
28 t-stretch
29 0 5
30 .15 10
31 .15 10
32 0 10
33 .15 10
34 .15 10
35 0 10
36 exit
37 * making a body of revolution
38 * pause
39 body of revolution
40 tangent of line to revolve about
41 1. 0 0
42 mappingName
43 cylinder
44 lines
45 55 25 7
46 boundary conditions
47 0 0 -1 -1 1 0
48 share
49 0 0 0 0 1 0
50 exit
51 * patch on the front singularity
52 reparameterize
53 mappingName
54 front

55 lines
56 15 15 5
57 orthographic
58 specify sa,sb
59 .5 .5
60 exit
61 boundary conditions
62 0 0 0 0 1 0
63 share
64 0 0 0 0 1 0
65 exit
66 * patch on back singularity
67 reparameterize
68 mappingName
69 back
70 lines
71 15 15 7
72 orthographic
73 choose north or south pole
74 -1
75 specify sa,sb
76 .5 .5
77 exit
78 boundary conditions
79 0 0 0 0 1 0
80 share
81 0 0 0 0 1 0
82 exit
83 *
84 * Here is the box
85 *
86 Box
87 specify corners
88 -2 -1 -1 2 1 1
89 lines
90 61 31 31
91 mappingName
92 box
93 exit
94 * pause
95 exit
96 generate an overlapping grid
97 box
98 cylinder
99 front

100 back
101 done
102 compute overlap
103 exit
104 *
105 save an overlapping grid
106 revolve.hdf
107 revolve
108 exit

The resulting grid is shown in figure 12.

4 EXAMPLES 33

Figure 12: An overlapping grid for a body of revolution. The body is generated by revolving a two-dimensional smoothed-
polygon mapping. Orthographic patches are used to cover the singularities at the ends of the body.

4 EXAMPLES 34

4.16 3D valve

Here is a command file to create a grid for a three dimensional valve. The cross-section of this geometry is similar to the
two-dimensional valve shown earlier. (file Overture/sampleGrids/valve3d.cmd)

1 *
2 * Make a 3d valve
3 *
4 * cpu=78s (ov15 sun-ultra optimized)
5 create mappings
6 * main cylinder
7 Cylinder
8 mappingName
9 outerCylinder

10 * orient the cylinder so y-axis is axial direction
11 orientation
12 2 0 1
13 bounds on the radial variable
14 .4 1.
15 bounds on the axial variable
16 -.1 .5
17 lines
18 55 11 9
19 boundary conditions
20 -1 -1 0 3 0 2
21 share
22 0 0 0 1 0 2
23 exit
24 * core of the main cylinder
25 Box
26 mappingName
27 cylinderCore
28 set corners
29 -.5 .5 0. .5 -.5 .5
30 lines
31 19 17 19
32 boundary conditions
33 0 0 1 2 0 0
34 share
35 0 0 3 1 0 0
36 exit
37 * valve stem
38 Cylinder
39 mappingName
40 valveStem
41 * orient the cylinder so y-axis uis axial direction
42 orientation
43 2 0 1
44 bounds on the radial variable
45 .2 .6
46 bounds on the axial variable
47 -.5 -.2
48 lines
49 41 9 9
50 boundary conditions
51 -1 -1 3 2 2 0
52 share
53 0 0 4 3 0 0
54 exit
55 * Make a 2d cross-section of the valve
56 SmoothedPolygon
57 mappingName
58 valveCrossSection
59 vertices
60 4
61 .4 0.
62 .85 0.
63 .65 -.2
64 .4 -.2
65 n-dist
66 fixed normal distance

67 .15
68 lines
69 65 17
70 sharpness
71 30
72 30
73 30
74 30
75 boundary conditions
76 0 0 1 0
77 exit
78 * Make the valve as a body of revolution
79 body of revolution
80 mappingName
81 valve
82 choose a point on the line to revolve about
83 0. 1. 0.
84 lines
85 41 11 35
86 boundary conditions
87 0 0 2 0 -1 -1
88 share
89 0 0 3 0 0 0
90 exit
91 * 2D cross section for the stopper
92 SmoothedPolygon
93 mappingName
94 stopperCrossSection
95 vertices
96 4
97 .65 -.5
98 .65 -.3
99 .85 -.1

100 1. -.1
101 n-dist
102 fixed normal distance
103 .15
104 exit
105 * stopper
106 body of revolution
107 mappingName
108 stopper
109 choose a point on the line to revolve about
110 0. 1. 0.
111 boundary conditions
112 1 1 2 0 -1 -1
113 share
114 4 2 0 0 0 0
115 lines
116 35 11 41
117 exit
118 view mappings
119 outerCylinder
120 cylinderCore
121 valveStem
122 valve
123 stopper
124 exit
125 exit
126 *
127 generate an overlapping grid
128 cylinderCore
129 outerCylinder
130 stopper
131 valve
132 valveStem

4 EXAMPLES 35

133 done
134 change parameters
135 ghost points
136 all
137 2 2 2 2 2 2
138 exit
139 * pause
140 compute overlap

141 exit
142 save an overlapping grid
143 valve3d.hdf
144 valve3d
145 exit
146
147

The resulting grid is shown in figure 13.

Figure 13: An overlapping grid for a three-dimensional valve.

4 EXAMPLES 36

4.17 Adding new grids to an existing overlapping grid.

New with version 18 This example shows how to start from an existing overlapping grid and add new grids. In this example
we begin by building Mappings for two new grids. From the “generate an overlapping grid” menu we read in an
existing overlapping grid and then specify the additional mappings. Ogen uses an optimized algorithm to compute the new
overlapping grid. If for some reason this algorithm fails you can always choose “reset grid” followed by “compute
overlap” to rebuild the grid from scratch.

1 *
2 * add mappings to an existing overlapping grid
3 *
4 create mappings
5 *
6 annulus
7 centre
8 1. 1.
9 boundary conditions

10 -1 -1 1 0
11 mappingName
12 annulus2
13 exit
14 *
15 rectangle

16 boundary conditions
17 0 0 0 0
18 set corners
19 -1.5 -.5 -1.5 -.5
20 mappingName
21 refine
22 exit
23 *
24 exit this menu
25 generate an overlapping grid
26 read in an old grid
27 cic
28 annulus2
29 refine
30

The resulting grid is shown in figure 14.

Figure 14: Ogen can be used to incrementally add new grids to an existing overlapping grid. Left: The initial overlapping grid.
Right: overlapping grid after adding two new component grids

4 EXAMPLES 37

4.18 Incrementally adding grids to an overlapping grid.

New with version 18 This example shows how to incrementally add new grids to an overlapping grid. As new grids are added
the overlapping grid can be re-computed to make sure that a valid grid exists. This can be a useful approach for building a large
complicated grid since any problems will be isolated to the component grid that may have caused an invalid grid to result.

1 create mappings
2 rectangle
3 lines
4 41 41
5 mappingName
6 backGround
7 exit
8 *
9 annulus

10 inner and outer radii
11 .1 .2
12 lines
13 21 5
14 centre for annulus
15 .25 .25
16 boundary conditions
17 -1 -1 1 0
18 mappingName
19 annulus1
20 exit
21 *
22 annulus
23 inner and outer radii
24 .1 .2
25 lines
26 21 5
27 centre for annulus
28 .6 .35
29 boundary conditions
30 -1 -1 1 0
31 mappingName
32 annulus2
33 exit
34 *
35 annulus
36 inner and outer radii
37 .1 .2
38 lines
39 21 5
40 centre for annulus
41 .35 .65
42 boundary conditions
43 -1 -1 1 0

44 mappingName
45 annulus3
46 exit
47 *
48 annulus
49 inner and outer radii
50 .1 .2
51 lines
52 21 5
53 centre for annulus
54 .7 .65
55 boundary conditions
56 -1 -1 1 0
57 mappingName
58 annulus4
59 exit
60 exit this menu
61 generate an overlapping grid
62 backGround
63 done choosing mappings
64 compute overlap
65 pause
66 add grids
67 annulus1
68 done choosing mappings
69 compute overlap
70 pause
71 add grids
72 annulus2
73 done choosing mappings
74 compute overlap
75 pause
76 add grids
77 annulus3
78 done choosing mappings
79 compute overlap
80 pause
81 add grids
82 annulus4
83 done choosing mappings
84 compute overlap
85

The resulting grids at various stages are shown in figure 15.

4 EXAMPLES 38

Figure 15: Ogen can be used to incrementally add new grids.

4 EXAMPLES 39

4.19 Other sample command files and grids

The Overture/sampleGrids directory contains a number of other command files for creating grids. We list these here
with a brief explanation.

cilc.cmd : Two dimensional cylinder in a long box. Used for computing the flow around a cylinder.

ellipsoid.cmd : Create a grid for a three-dimensional ellipsoid in a box. See also ellipsoidCC.cmd for the cell-centered
version.

singularSphere.cmd : Build a grid for a sphere in a box where the singularities on the sphere are not removed. A PDE solver
must know how to deal with this special type of grid.

tse.cmd : Build a grid for a model two-stroke engine.

mastSail2d.cmd : Make a grid for a sail attached to a mast.

building3.cmd : Three dimensional grids for some buildings.

Figure 16: A fillet grid is used to join two cylinders, filletTwoCyl.cmd.

4 EXAMPLES 40

Figure 17: A JoinMapping is used to join two cylinders, joinTwoCyl.cmd. To create the deformed cylinder the JoinMapping
first computes the curves of intersection between two intersecting cylinders. Four TFIMappings are then generated to represent
each face of the deformed cylinder and finally another TFIMapping is used to blend these four surface TFIMappings.

Figure 18: An overlapping grid for a submarine created with sub.cmd. The submarine hull is defined as a body of revolution
from a spline curve. The sail and fins are created initially with the CrossSectionMapping. The JoinMapping is used to join
these appendages to the submarine body.

4 EXAMPLES 41

Figure 19: An overlapping grid for valve, port and cylinder created with valvePort.cmd. The JoinMapping is used to create
the grid that joins the valve-stem to the port surface.

4 EXAMPLES 42

Figure 20: A mast is attached to a sail. The inner boundary curves are defined from splines under tension while the component
grids are generated with hyperbolic grid generation mastSail2d.cmd

.

4 EXAMPLES 43

Figure 21: The DepthMapping (see bottom figure) is used to give a vertical dimension to mappings defined in the plane,
depth.cmd. In this case a separate TFI mapping, top left, defines the vertical height function Both an annulus and a square
(top right) are given a depth.

4 EXAMPLES 44

Figure 22: Grids for two disjoint regions that match along a circle, innerOuter.cmd

4 EXAMPLES 45

Figure 23: Grid for a 3d triangular sail. The SweepMapping is used to generate a grid around the edge of the sail, tri-
Sail.cmd

Figure 24: CAD surface (left) and a volume mesh (right) generated with Overture Mappings and Ogen.

4 EXAMPLES 46

Figure 25: Grid for the core of a rocket, showing the fuel-grain star-pattern. Rocket shape was created with the cross-section
mapping and curves defined by the RocketMapping class. Thanks to Nathan Crane for building this grid.

Figure 26: Grid for some buildings built with building3.cmd

5 MIXED PHYSICAL-INTERPOLATION BOUNDARIES, MAKING A C-GRID, H-GRID OR BLOCK-BLOCK GRID47

5 Mixed physical-interpolation boundaries, making a c-grid, h-grid or block-
block grid

To make a ’c-grid’ as in figure (27) or an ’h-grid’ as in figure (28) or the two block grid of figure (29), one should use the
’mixed boundary’ option from the change parameters menu. A mixed boundary is a physical boundary where parts of the
boundary can interpolate from another (or the same) grid. Actually it is either the boundary points or the ghost points on parts
of the boundary that interpolate from another grid. When solving a PDE boundary value problem, the boundary points adjacent
to ghost points that interpolate will be ’interior points’ where the PDE should be applied, rather than the boundary condition.
A mixed boundary on a MappedGrid g will have g.boundaryCondition(side,axis) > 0 and g.boundary-
Flag(side,axis)==MappedGrid::mixedPhysicalInterpolationBoundary.

There are two ways to determine which points on a mixed boundary should be interpolated

1. Automatic: With this option the program will attempt to find all the valid interpolation points. For the automatic
determination of the mixed boundary interpolation points you can specify the tolerance for matching in two possible
ways:

r matching tolerance : boundaries match if points are this close in unit square space.

x matching tolerance : boundaries match if points are this close in x space

The boundaries will be deemd to match if either one of the above two matching conditions holds.

2. Manual: with this option one must explicitly specify a set of points on the boundary that should be interpolated from
another grid. One also indicates whether to interpolate boundary points or ghost points. If there are multiple disjoint
regions to interpolate, each one should be specified separately. Even when points are specified in this manual case the
program will still check to see if the points can be interpolated in a valid manner (and only interpolate those valid ones)
using the r matching tolerance described above.

5.1 Automatic mixed-boundary interpolation

It is recommended when making a c-grid or an h-grid to have the matching parts of the boundaries actually overlap by an
amount greater than or equal to zero (as shown in the examples).

The c-grid was generated with the command file Overture/sampleGrids/cgrid.cmd. A c-grid has a special topol-
ogy where parts of the boundary of the c-grid actually become interior points with a periodic like boundary condition. This is
implemented in Ogen by the ’mixed boundary’ option. Along the c-grid ’branch cut’, ghost point values interpolate from the
opposite side of the c-grid.

Note that the c-grid boundary was made with a spline that wiggles a little bit along the branch cut. To ensure that the
branch cut would be properly found, the lower part of the cut was raised by a small amount so that it would overlap the upper
part of the grid (and vice versa to be symmetric). One can also specify a matching tolerance to take care of this problem, but
it is more robust to use this trick of overlapping the branch cut a little bit. A matching tolerance was actually specified here,
to be safe, but a message printed from ogen indicated that it was not needed. The h-grid was generated with the command
file Overture/sampleGrids/hgrid.cmd. An h-grid has a special topology where parts of the boundary of the h-grid
actually become interior points that match up to a second grid. This is implemented in Ogen by the ’mixed boundary’ option.
Along the h-grid ’branch cut’, ghost point values interpolate from the other grid.

Note that the h-grid boundaries were made with splines that wiggle a little bit along the branch cuts (matching portions).
To ensure that the branch cuts would be properly found, the lower part of the cut was raised by a small amount so that it would
overlap the upper part of the grid (and vice versa to be symmetric). One can also specify a matching tolerance to take care of
this problem, but it is more robust to use this trick of overlapping the branch cut a little bit. A matching tolerance was actually
specified here, to be safe, but a message printed from ogen indicated that it was not needed.

The grid in figure (29) was generated with the command file Overture/sampleGrids/twoBlock.cmd.

5.2 Manual specification of mixed-boundary interpolation points

The command file cgrid.manual.cmd found in the Overture/sampleGrids directory shows how to manually create
a c-grid by specifying which points should be interpolated. Note that we specify how points on the bottom of the c-grid branch
cut interpolate from the top (along the ghost points) and how points on the top boundary interpolate from the bottom.

5 MIXED PHYSICAL-INTERPOLATION BOUNDARIES, MAKING A C-GRID, H-GRID OR BLOCK-BLOCK GRID48

Figure 27: An overlapping grid using a c-grid makes use of the ’mixed boundary’ option. A mixed-boundary is a boundary that
is sometimes a physical boundary of the domain and sometimes an interpolation boundary.

5.3 Spitting a grid for interpolation of a grid to itself

When mixed boundary interpolation points are to be interpolated from the same grid (as in the case of a c-grid) ogen will
actually temporarily split the grid into two pieces and determine how points on one piece interpolate from the other. This is
necessary to prevent points from interpolating from themselves. By default, for a mixed boundary on (side,axis) the grid is split
at the halfway point along “(axis+1) mod numberOfDimensions”. If this is not correct you should explicity specify
where to split the grid using the specify split for self interpolation option. In this case you specify the axis
that should be split and the index position of the split.

5 MIXED PHYSICAL-INTERPOLATION BOUNDARIES, MAKING A C-GRID, H-GRID OR BLOCK-BLOCK GRID49

Figure 28: An overlapping grid using an h-grid makes use of the ’mixed boundary’ option.

5 MIXED PHYSICAL-INTERPOLATION BOUNDARIES, MAKING A C-GRID, H-GRID OR BLOCK-BLOCK GRID50

Figure 29: An overlapping grid for two blocks makes use of the ’mixed boundary’ option.

6 MANUAL HOLE CUTTING AND PHANTOM HOLE CUTTING 51

6 Manual Hole Cutting and Phantom Hole Cutting

Ogen’s hole cutting algorithm can make mistakes in some difficult cases such as when there are thin bodies. There is a manual
hole cutting option that can be used in these difficult cases. Recall that when ogen cuts a hole with the boundary of grid g0 it
marks points on grid g1 that lie near the boundary of g0. Points on g1 are marked as interpolation or as hole points depending
on whether they are inside or outside grid g0. The hole cutting algorithm can make a mistake if there is a grid g2 that is very
close to the boundary of g0 but which should not be cut. Normally one can fix this problem by choosing the option prevent hole
cutting of g0 in g2 ; however there are some cases when one must allow g0 to cut some holes in a different portion of g2.

There are two steps to perform manual hole cutting:

1. Specify phantom hole cutting for grid g0 onto grid g1. In this case only interpolation points on g1 will be marked near the
boundary of g0; no hole points will be marked. These interpolation points should completely surround the hole region.

2. Manually cut a small hole in grid g1 using the manual hole cutting option. The hole points that are specified must lie
within the region of g1 that should be removed. These hole points will act as a seed and will be swept out to fill the entire
hole region. If the manually placed hole points are put in the wrong location then the hole points may expand throughout
much of the grid, resulting in an invalid overlapping grid.

The command files cicManualHoleCut.cmd and sibManualHoleCut.cmd in the Overture/sampleGrids di-
rectory show examples of manually cutting holes.

7 TROUBLE SHOOTING 52

7 Trouble Shooting

In this section we give some hints on what to do when you are unable to build a grid.
When there is not enough overlap between the grids or you have made a mistake in specifying the boundary conditions

or share flag values etc. the grid generator will fail to build a grid. When the algorithm fails the grid will be plotted and the
offending points will be plotted with black marks. In addition information is printed to the screen and to a log file, ogen.log
that may be helpful in tracking down what went wrong.

7.1 Failure of explicit interpolation

As an example, in figures (30) and (31) we show the result of trying to use explicit interpolation with the two-
dimensional valve grid. The algorithm fails to interpolate some points. These points are plotted with black marks.

Figure 30: An example showing the failure of the overlapping grid algorithm when there is insufficient overlap. We have tried
to use explicit interpolation for the two-dimensional valve. The algorithm fails and plots the offending points with black marks.

When the algorithm fails there is information written to the file ogen.log. In this case the file contains information on
each point that failed, as for example:

ERROR: unable to interpolate a point on grid=backGround, (i1,i2,i3)=(26,35,0), x=(5.200e-01, 7.000e-01, 0.000e+00)
Try to interpolate from grid=stopper, r=(6.66e-01,5.96e-01,0.00e+00)

7 TROUBLE SHOOTING 53

Figure 31: A magnification of the failed grid shows that the points marked in black cannot be interpolated in an explicit manner
using a 3× 3 interpolation stencil.

mask =[1][1][1][-1][1][1][-1][-1][-1] : 0=hole, -1=interp., 1=discret.
...point is inside but explicit interpolation failed because stencil has an interpolation point in it.
Try to interpolate from grid=valve, r=(4.27e-01,4.84e-01,0.00e+00)
mask =[1][1][1][1][1][1][1][1][-1] : 0=hole, -1=interp., 1=discret.
...point is inside but explicit interpolation failed because stencil has an interpolation point in it.

This information indicates that a point could not be interpolated from either of two possible grids since the 9-point inter-
polation stencil (indicated by the 9 values of mask) contains some points that are themselves interpolation points (mask=-1).
The values of r indicate the unit square coordinates in the grid we are trying to interpolate from.

Possible solutions to this problem are to use implicit interpolation or to increase the number of grid points on the grids or
to decrease the interpolation width.

7 TROUBLE SHOOTING 54

7.2 Tips

Here are some tips for fixing a grid that fails:

check the log file: Check the ogen log file, ogen.log for informational messages that may help you understand what went
wrong.

display intermediate results: Turn on the option ‘display intermediate results’ in the ogen menu before choosing the option
‘compute overlap’. This will plot the grid at intermediate stages in the overlapping grid algorithm.

check the mappings: It is possible that the one of the Mapping’s you have created has an error in it. There is a function
available to check the properties of a Mapping. The Mapping can be checked either when you create the Mappings (use
the ‘check mapping’ option) or from the grid generation menu. The checkMapping function will report any errors
it finds. For example it will check the derivatives of the mapping by using finite differences. There is probably no reason
to be concerned if the relative errors in the derivatives are small, less than 10−2 say.

Use implicit interpolation: As mentioned in section (3.5) implicit (default) interpolation requires less overlap than explicit
interpolation. If you are using explicit interpolation you could turn on implicit interpolation.

check boundary conditions: Use the view mappings option under create mappings to view all the mappings. Check
that all physical boundaries are shown as a positive value, that interpolation boundaries have a zero value and that periodic
boundaries are black.

check for sufficient overlap: Use the view mappings option under create mappings to view the mappings and check
that the mappings appear to overlap sufficiently. If there is not sufficient overlap then increase the number of grid points.

check the share flag: use the view mappings option under create mappings and plot the boundaries by their share
flag value. Make sure that different grids that share the same boundary have the same share flag value (see section (3.2)
for a description of share flags).

shared side tolerance: even if your share flags are correct, the grid generator has a relative tolerance that it uses to allow for
discrepancies between the boundary representations of two grids. This tolerance measures the distance in grid cells that
the boundaries can differ by and still be assumed to be the same boundary. If your boundaries do not match closely
then you may need to increase this value with the shared boundary tolerance option that is available from the
change parameters menu.

turn off hole cutting: As described in section (3.3), by default physical boundaries will cut holes in other nearby grids. You
may need to disable the hole cutting as shown in the “inlet outlet” example, section (4.7).

8 ADDING USER DEFINED MAPPING’S 55

8 Adding user defined Mapping’s

Advanced users of Overture may want to write their own Mapping class, see the Mapping class documentation for how to do
this. If you want to add a new type of Mapping to ogen then you should copy and change the driver program ogenDriver.C
(found in Overture/in) and add in your new Mapping. Compile and load this program to make your own version of ogen.

The next listing shows ogenDriver.C. If the preprocessor macro ADD USER MAPPINGS is defined (for example, by
adding the compile flag -DADD USER MAPPINGS then a user defined AirfoilMapping will be added.

1 //===
2 // Here is the driver program for ‘ogen’ - the overlapping grid generator
3 //
4 // Usage: type
5 // ogen
6 // to run with graphics, or type
7 // ogen noplot
8 // to run without graphics, or
9 // ogen file.cmd

10 // to run ogen with graphics and read in a command file, or
11 // ogen noplot file.cmd
12 // to run ogen without graphics and read in a command file.
13 //
14 // By default user commands will be saved in the file "ogen.cmd"
15 //
16 // You can add to the driver any nonstandard Mapping’s that you want to use.
17 // See the example below where (if the macro ADD_USERMAPPINGS is defined) an AirfoilMapping
18 // is created and added to a list. The list is then passed to ogen. The Mapping
19 // can be subsequently changed within ogen, if required.
20 //
21 // Thus, for example, your compile line should look something like:
22 // CC -DADD_USERMAPPINGS ogenDriver.C
23 //
24 //===
25
26 #include "Overture.h"
27 #include "MappingInformation.h"
28 #include "PlotStuff.h"
29
30 // Here are some user defined mappings
31 #ifdef ADD_USER_MAPPINGS
32 #include "AirfoilMapping.h"
33 int addToMappingList(Mapping & map);
34 #endif
35
36 int ogen(MappingInformation & mappingInfo, GenericGraphicsInterface & ps, const aString & commandFileName);
37
38 int
39 main(int argc, char *argv[])
40 {
41 Overture::start(argc,argv);
42 // Index::setBoundsCheck(off);
43
44 aString commandFileName="";
45 if(argc > 1)
46 { // look at arguments for "noplot" or some other name
47 aString line;
48 for(int i=1; i<argc; i++)
49 {
50 line=argv[i];
51 if(line=="noplot" || line=="nopause" || line=="abortOnEnd" || line=="nodirect")
52 continue; // these commands are processed by getGraphicsInterface below
53 else if(commandFileName=="")
54 commandFileName=line;
55 }
56 }
57 else
58 cout << "Usage: ‘ogen [noplot][nopause][abortOnEnd][file.cmd]’ \n"
59 " noplot: run without graphics \n"
60 " nopause: do not pause \n"
61 " abortOnEnd: abort if command file ends \n"
62 " file.cmd: read this command file \n";
63

8 ADDING USER DEFINED MAPPING’S 56

64 // --- create user defined mappings ----
65 MappingInformation mappingInfo;
66 #ifdef ADD_USER_MAPPINGS
67 AirfoilMapping airfoil;
68 mappingInfo.mappingList.addElement(airfoil);
69 // Do this so we can read the airfoil mapping from a data-base file
70 addToMappingList(airfoil);
71 #endif
72
73
74 // Graphics interface:
75 // Note: options "noplot", "nopause" and "abortOnEnd" are handled in the next call:
76 GenericGraphicsInterface & ps = *Overture::getGraphicsInterface("ogen: Overlapping Grid Generator",false,argc,argv);
77
78 // By default start saving the command file called "ogen.cmd"
79 aString logFile="ogen.cmd";
80 ps.saveCommandFile(logFile);
81 cout << "User commands are being saved in the file ‘" << (const char *)logFile << "’\n";
82
83 // create more mappings and/or make an overlapping grid
84 ogen(mappingInfo,ps,commandFileName);
85
86 Overture::finish();
87 return 0;
88 }
89
90
91
92

9 OVERLAPPING GRID GENERATOR: OGEN 57

9 Overlapping Grid Generator: Ogen

The overlapping grid generation algorithm determines how the different component grids communicate with each other. The
algorithm must also determine those parts of component grids that are removed from the computation because that part of the
grid either lies underneath another grid of higher priority or else that part of the grid lies outside the domain.

9.1 Command descriptions

9.1.1 Interactive updateOverlap

int
updateOverlap(CompositeGrid & cg, MappingInformation & mapInfo)

Description: Here is a description of some of the commands that are available from the updateOverlap function of Ogen.
This function is called when you choose “generate overlapping grid” from the ogen program.

compute overlap : this will compute the overlapping grid. As the grid is generated various information messages are
printed out. Some of these messages may only make sense to the joker who wrote this code.

change parameters : make changes to parameters. See the next section for details.

display intermediate results : this will toggle a debugging mode. When this mode is on, and you choose compute
overlap to generate the grid, then the overlapping grid will be plotted at various stages in its algorithm. The
algorithm is described in section (9.2). The program will pause at the end of each stage of the algorithm and allow
you to either continue or to change the plot as described next. Experienced users will be able to see when
something goes wrong and hopefully detect the cause.

change the plot : this will cause the grid to be re-plotted. You will be in the grid plotter menu and you can make changes
to the style of the plot (toggle grids on and off, plot interpolation points etc.). These changes will be retained when
you exit back to the grid generator.

9.1.2 Non-interactive updateOverlap

int
updateOverlap(CompositeGrid & cg)

Description: Build a composite grid non-interactively using the component grids found in cg. This function might be called if
one or more grids have changed.

Return value: 0=success, otherwise the number of errors encountered.

9.1.3 Moving Grid updateOverlap

int
updateOverlap(CompositeGrid & cg,

CompositeGrid & cgOld,
const LogicalArray & hasMoved,
const MovingGridOption & option =useOptimalAlgorithm)

Description: Determine an overlapping grid when one or more grids has moved. NOTE: If the number of grid points changes
then you should use the useFullAlgorithm option.

cg (input) : grid to update

cgOld (input) : for grids that have not moved, share data with this CompositeGrid.

hasMoved (input): specify which grids have moved with hasMoved(grid)=TRUE

option (input) : An option from one of:

9 OVERLAPPING GRID GENERATOR: OGEN 58

enum MovingGridOption
{

useOptimalAlgorithm=0,
minimizeOverlap=1,
useFullAlgorithm

};

The useOptimalAlgorithm may result in the overlap increasing as the grid is moved.

Return value: 0=succuss, otherwise the number of errors encountered.

9 OVERLAPPING GRID GENERATOR: OGEN 59

hangeParametersInclude.tex

9.2 Algorithm

The algorithm used by Ogen is based upon the original CMPGRD algorithm[1] with some major changes to improve robustness.
The basic improvement is that the new algorithm initially removes all grid points that lie inside “holes” in the grids. Once the
holes have been cut the program can determine explicitly whether there is enough overlap to generate an overlapping grid and
if there is not enough overlap the offending points can be shown.

The algorithm for computing the overlapping grid communication is perhaps most easily understood by reading the follow-
ing description and also referring to the series of examples that follow.

Here are the basic steps in brief:

interpolate boundaries: First try to interpolate points on physical boundaries from points on physical boundaries of other
grids.

Boundary points that interpolate from the interior of other grids are marked either as being an interiorBoundary-
Point and an interpolationPoint (using a bitwise ‘or’ in the mask).

mark hole boundaries: For each physical boundary find points on other grids that are near to and inside or outside of the
boundary. After this step the holes in the grid will be bounded by a boundary of holes points next to a boundary of
interpolation points.

remove exterior points: Mark all remaining hole points. These points can be easily swept out since the hole cutting algorithm
ensures that all holes are bounded by interpolation points.

classify (improper) interpolation boundary: The points on the stairstep boundaries and interpolation boundaries are col-
lected into a list. We first try to interpolate these points from other grids using improper interpolation. A point is said to
interpolate in an improper way from a grid if it simply lies within the grid. Since all the points in the list lie within in the
domain they must interpolate from some other grid or else there is something wrong. See the section on trouble-shooting
for examples when this step fails.

classify proper interpolation boundary: We now take the list of (improperly) interpolated points and sort them into one of
the following categories:

proper interpolation: A point of a grid interapolates in a proper way from a second grid if the appropriate stencil of
points exists on the second grid and consists of the correct types of points for the implicit or explicit interpolation.

discretization point: An interpolation point on a physical boundary may be used as a dicretization point.

At the successful completion of this step we should have a valid overlapping grid. There should be no fatal errors in
performing the final steps.

interpolate discretization points: To reduce the amount of overlap we attempt to interpolate discretization points from grids
of higher priority.

remove redundant interpolation points: Any interpolation points that are not needed are removed from the computation.
Interpolation points that are needed but that can just as well be used as discretization points are turned into discretization
points.

9.3 Hole cutting algorithm

After checking for interpolation points on boundaries, the next step in the overlapping grid algorithm is to cut holes. This is
the most critical step in the algorithm. Each side of a grid that represents a physical boundary is used to cut holes in other grids
that overlay the boundary.

Each face on grid g representing a physical boundary is used to cut holes in other grids. We also mark points that can
interpolate from grid g. The goal is to build a barrier of hole points next to interpolation points that partitions the grid into two
regions – one region that is inside the domain and one region that is outside the domain.

• We check for points, xg on the face of grid g that can interpolate from from another grid g2. These points i2 on g2 are
potential hole points.

• A potential hole point is not cut if it can interpolate from grid g, in this case the point is marked as an interpolation point.

9 OVERLAPPING GRID GENERATOR: OGEN 60

• A potential hole point is NOT cut if the distance to the cutting surface is greater than 2∆x2 where ∆x is a measure of the
cell size on g2 (currently the length of the diagonal of the cell i2). Thus in general there will be a layer of 1-3 points cut
near the cutting surface.

• A potential hole point is NOT cut if the point i2 already can interpolate from another grid g3 AND the grid g3 shares the
same boundary with grid g. This condition applies to a thin body and prevents points from being cut that are actually
inside the domain on the opposite side of the thin body.

This section needs to be completed...

1. Invert the points xg on grid g2 given coordinates rg2
.

2. Compute the holeMask mask array which indicates whether a point on the cutting face is inside of outside g2

Compute the holeMask:
holeMask(i1,i2,i3) = 0 : point is outside and not invertible

= 1 : point is inside
= 2 : point is outside but invertible

| |
| grid2 |

holeMask | |
--0---0---2---2---1---1---1---1---1---1---2---2---2---0---0---- cutting curve, grid

| |
| |
| |
| |

3. The idea now is to mark all points on g2 that are near the cutting face.

9.4 Finding exterior points by ray tracing

*** Ray tracing is NO longer performed to remove holes points*** but it is used to generate embedded boundary grids (a future
feature).

Exterior points are found by counting the number of times that a semi-infinite ray, starting from a point x and extending in
the y-direction to +∞, crosses the boundaries of the region. If the ray crosses the boundaries an even number of times then it
is outside the domain.

If a ray crosses the region where two grids overlap then there will appear to be two points of crossing. We must eliminate
one of these points of crossing or else we will obtain an incorrect result.

The ray casting algorithm will determine the intersection of the ray with the boundary surfaces represented as a triangulation
of the discrete points.

We keep a list of the positions of intersection, xi, as well as the grid and grid point location of the intersection. Ideally we
would only need to check whether two points of intersection from two different grids are close, ‖xi − xj‖ < ε. It is not very
easy, however, to determine an appropriate value for ε. If the ray crosses the boundary in a nearly normal direction then the
distance d = ‖xi − xj‖ will be of order the discrepency between the two discrete representations of the surface which can be
estimated by ??

If, however, the ray crosses the boundary in a nearly tangential direction then the distance d could be as large as the grid
spacing in the tangential direction.

There are further complications since the body may represent a very thin surface (such as a wing) and there may be points
of intersection that are close together in physical space but actually on opposite sides of the thing body.

Thus to perform a robust check we do the following

1. Check that two intersecting points belong to two different grids, g1 6= g2.

2. Check that the boundaries on the two grids are shared sides (meaning they belong to the same surface as specified in the
grid generation by setting the share flag).

9 OVERLAPPING GRID GENERATOR: OGEN 61

3. Check that the grid cells that contain the points of intersection have some vertices that are interpolation points (so that
we know we are in a region of overlap) ???

4. check that the normals to the boundary at the points of intersection point in the same basic direction, n1 · n2 > 0.

5. check that the distance d = ‖xi − xj‖ between the points satsifies

α = |(x2 − x1) · n|/||(x2 − x1)|| 0 ≤ α ≤ 1

dn ≡ normal discrepency

dt ≡ tangential discrepency

d ≤ αdn + (1− α)dt

x1

x2

Figure 32: The points of intersection of a ray with a surface covered by two overlapping grids. If the ray is nearly tangent to
the surface then the two points of intersection may not be very close together.

9 OVERLAPPING GRID GENERATOR: OGEN 62

9.5 Adjusting grid points for the boundary mismatch problem

When the sides of two grids overlap on a boundary then there can be a problem interpolating one grid from the other if the grids
do not match well enough. This problem is especially likely if the grids are formed by interpolating data points and the grid
spacing is highly stretched in the normal direction.

Figure (33) shows two grids that share a boundary. If we suppose that the mapping for the grid is defined by linear
interpolation between the grid points then it is clear that points on the boundary of grid A appear to be well outside or well
inside the boundary of grid B, when actually the boundaries are meant to be the same.

This boundary mis-match causes two problems. The first problem, encountered by the grid generator, is that those boundary
points (or even interior points for highly strteched grids) that appear to be outside the grid should actually be allowed to
interpolate. The hole cutting algorithm will mark these points as being unusable and outside the grid. The second problem
occurs in PDE solvers. Even if we allow the points to interpolate, the interpolation will not be very accurate and the solution
can look bad.

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10
-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

1

2

3

4

x0

w

grid A

grid B

Figure 33: Grid A and Grid B share a boundary but if the mappings are defined by linear interpolation, the grid point x0 will
appear to be outside grid B.

To fix both these problems we adjust the points on grid A so that the boundary points of grid A are shifted to lie exactly on
the boundary of grid B. Other points on grid A are also shifted, but the amount of the shift decreases the further we are from
the boundary. If the grid is highly stretched then the relative amount we shift the points, compared to the local grid spacing,
decreases as we move away from the boundary. For example if the spacing near the boundary is 10−3 compared to the spacing
away from the boundary layer then the amount we shift interior points will be on the order of 10−3, a very small relative change.
Note that this shift is only done when we are determining the location of A grid points in the parameter space of grid
B (for interpolation). The actual grid points are not changed in the CompositeGrid created by the grid generator. Also
note that points on grid A may be shifted one amount when interpolating from grid B, but could be shifted another amount if
interpolating from a third grid C.

9 OVERLAPPING GRID GENERATOR: OGEN 63

Referring to figure (34) the point x0 is shifted to the point x1 on the boundary. The point x2 is also shifted, but by a smaller
amount, that depends on the distance from the boundary relative to the vector w

x̃2 ← x2 + (x1 − x0)[1−
(x2 − x0) ·w

‖w‖2
]

≡ x2 + (x1 − x0)[1−
(x2 − x0) ·w

‖w‖2
]

≡ S(x1)x2

The opposite-boundary vector w is chosen to extend from the boundary to the grid points as some distance from the boundary.
We use the grid line that is at least 1/3 of the distance (in index space) to the opposite side, but at least 10 lines (unless there
are fewer than 10 lines). The vector should be far enough away so that points in the boundary layer are shifted to be inside the
other grid, but close enough so that w is nearly parallel to the normal to the boundary.

The shift operator S will project the boundary points of grid A onto the boundary of grid B.
A complication occurs if the more than one side of grid A shares sides with the same grid B, as shown in figure (34). In this

case we must determine shifts in multiple directions so that after these shifts the boundary points on grid A are shifted to lie on
the boundary of grid B. We cannot simply apply the above algorithm for each side independently.

To fix this problem we sequentially apply the shift operations more than once in order to ensure that the grids points are
projected onto all the shared boundaries. Let S0, S1 and S2 denote the shift mappings in each coordinate direction. In two
dimensions, the operator

x̃2 ← S1S0x

will not work properly since after the application of S1 the points on boundary 0 can be shifted off the boundary. However the
operator

x̃2 ← S0S1S0x

would work since the final S0 operator will not change the points on boundary 1 (since the corner points of grid A have been
projected to the corner points of grid B after the two steps S1S0x).

Rather than applying S0 twice it is more efficient to define new operators to perform the projection in only two steps:

x̃2 ← S̃1S̃0x

We can do this

S̃0 = S0(x1 + y)

y = S0(x1)x1

S̃1 = S1

In three-dimensions if we have three adjacent shared faces then

x̃2 ← S̃2S̃1S̃0x

S̃0 = S0S2S1S0

S̃1 = S1

S̃1 = S2

9 OVERLAPPING GRID GENERATOR: OGEN 64

Figure 34: An overlapping grid testing the mismatch problem, created with mismatch.cmd. The refinement grid is artifically
translated so that the two boundaries it shares with the base grid do not match. The figure on the right is a magnification of the
lower left corner, before the overlap algorithm was applied.

9.6 Refinement Grids

Refinement grids can be added to a GridCollection or to a CompositeGrid. The component grids that exist in the
original CompositeGridare known as base grids. These grids represent refinement level 0. Refinement grids are added on
a particular base grid and belong to a particular level. Normally the refinement levels are properly nested so that all grids on
refinement level l are contained in the grids on refinement level l − 1.

A given refinement grid will have only one parent grid on refinement level 0, i.e. it will belong to only one base grid. A
refinement grid on level l may have more than one parent grid on level l − 1.

Normally a refinement grid will interpolate its ghost values from other refinement grids on the same level or from its parent
grids. Points on the parent grid that lie underneath the refinement will interpolate from the refinement (also known as the child
grid).

If refinement grids lie in a region where two base grids overlap, it is necessary to determine how the refinements interpolate
from the grids they overlap that belong to a different base grid.

The updateRefinements function determines how refinement grids interpolate from other grids that they overlap. This
function does not determine how a refinement grid interpolates from the grid it has refined.

If a refinement...

9 OVERLAPPING GRID GENERATOR: OGEN 65

9.7 Improved Quality Interpolation

This is new* Version 16 or higher.
Normally one wants to avoid having a fine grid interpolate from a coarse grid or vice versa. Often this can be accomplished

through the normal specification of a priority for each grid. Sometimes, however, using a single priority per grid is not sufficient.

Figure 35: The lower annulus (the highest priority grid) has points that interpolate from the fine boundary layer grid of the upper
annulus. This interpolation will be inaccurate if the solution varies rapidly in the boundary layer, and the lower annulus will be
unable to represent the boundary layer solution accurately. This problem cannot be fixed by simply changing the priorities of
the grids.

Figure (35) shows a grid where the highest priority grid (the bottom annulus) interpolates from the fine boundary layer grid
of the top annulus. By turning on the flag to improve the quality of interpolation the grid shown in figure (36) results.

We use a simple measure of the quality of the interpolation to be the relative size of the grid cells on the two grids involved.

quality of interpolation =
cell size of the interpolation point

cell size of the interpolee point

The quality is bad (i.e. large) if the interpolee grid cells are smaller. This simple measure seems adequate for our purposes of
preventing coarse grid points on higher priority grids from interpolating from lower priority grids.

The algorithm for removing poor quality points is

1. Follow the standard algorithm until all points have been interpolated but redundant points have not yet been removed.

2. Try to interpolate all points on the finest grid that can interpolate from a lower priority grid. (This is not done in the
standard case).

3. Attempt to remove poor quality points from the boundary of the interpolation point region where a point interpolates
from a lower priority grid. A point is removed if it is not needed for discretization and the quality measure is greater
than a specified value (normally around 2). If a point is removed then also check the new boundary points that are now
exposed.

4. After points have been removed we need to go back and update any other interpolation points that can no-longer interpo-
late (since they required some of the points that were deleted).

The algorithm is supposed to be guaranteed to give a valid grid provided a grid could be made without the improvement steps.

9.7.1 Note:

There is a more sophisticated way to measure the quality of interpolation. ***This measure is not used currently**.

9 OVERLAPPING GRID GENERATOR: OGEN 66

Figure 36: With the ‘improved quality’ option turned on, the lower annulus no longer interpolates from the fine boundary layer
of the upper annulus.

One way to measure the quality of the interpolation is defined as follows. We would like the cell at an interpolation point
on grid A to be approximately the same size, shape and orientation as the cells on the interpolee grid B. The vector

dA
i =

∂xA

∂ri

∆rA
i

measures the grid cell spacing and orientation of the side of the cell along the axis ri of grid A. This vector corresponds to a
vector in the parameter space of grid B given by

rB
i =

[
∂rB

∂x

]
dA

i

The length in grid cells of this vector rB
i is approximately

∥∥∥∥∥∥∥

1

∆rB

1

0 0

0 1

∆rB

2

0

0 0 1

∆rB

3

 rB

i

∥∥∥∥∥∥∥

where we have scaled each element by the appropriate grid spacing. This length should be near 1 for good quality (since the
original vector dA

i has a length of one grid cell).
Thus to measure the quality of all sides on the original cell we can compute

p =

∥∥∥∥∥∥∥

1

∆rB

1

0 0

0 1

∆rB

2

0

0 0 1

∆rB

3

[
∂rB

∂x

] [
∂xA

∂r

]

∆rA
1 0 0

0 ∆rA
2 0

0 0 ∆rA
3

∥∥∥∥∥∥∥

The interpolation will be defined to be of high quality if this norm is near 1. In particular we use the quality measure

q =
1

2
(p +

1

p
)

where we prefer points with a smaller value for q.

10 TREATMENT OF NEARBY BOUNDARIES AND THE BOUNDARYDISCRETISATIONWIDTH 67

10 Treatment of nearby boundaries and the boundaryDiscretisationWidth

** new with version 18**
Figure (37) shows the grid generated in the case when two boundaries are very near to one another. The

boundaryDiscretisationWidth parameter, which is by default 3, indicates that any boundary point that is a discretisa-
tion point should have two interior neighbouring points so that a one-sided 3-point scheme could be applied on the boundary.
To ensure this condition is satisfied extra points are allowed that normally would not be valid. The interpolation points that
are outside the domain are “interpolated” from the nearest point on the boundary by pretending that the interpolation point has
been moved to the boundary. This will only be first order accurate interpolation.

10 TREATMENT OF NEARBY BOUNDARIES AND THE BOUNDARYDISCRETISATIONWIDTH 68

Figure 37: When two boundaries are nearby to one another the overlapping grid algorithm ensures that enough interior grid-
points remain next to the boundary points to allow the boundary point to be discretised. While not very accurate this approach
at least allows a grid to be built.

11 ADAPTIVE MESH REFINEMENT 69

11 Adaptive Mesh Refinement

When refinement grids are added to an overlapping grid and a refinement grid overlaps an interpolation boundary, the Ogen
function updateRefinement should be called. This function will cut holes in the refinement grids and determine how to
interpolate points on the hole-boundary.

The order of preference for the interpolation of a point on the hole-boundary of a refinement grid is to

1. interpolate from another refinement at the same level and different base grid

2. interpolate from another refinement at a lower level and different base grid

3. interpolate from a refinement grid on the same base grid (this case should only be used as a backup and should normally
not be needed).

11.1 The algorithm for updating refinement meshes added to an overlapping grid.

There are two main steps in the algorithm for adding refinement meshes to an overlapping grid.

1. Build a mask array for each refinement grid that indicates where holes are and which points should be interpolated.

2. For each interpolation point on the hole boundary, find which grid to interpolate from.

To be efficient, these steps are performed with a different procedure than the normal overlapping grid algorithm. The mask
array is built entirely by looking at the mask array from the base grids. The interpolation points are determined by looking at
the interpolation points on the base grids in order to determine the likely interpolee grids.

11 ADAPTIVE MESH REFINEMENT 70

Refinement grids

Figure 38: When refinement grids are added to an overlapping grid, the updateRefinement function should be called in
order to compute a valid grid.

11 ADAPTIVE MESH REFINEMENT 71

11.2 Example: Circle in a Channel

These figures show the circle in a channel grid at various stages in the overlap algorithm.

Grid after cutting holes. Physical boundaries are used to cut holes in nearby grids. The hole cutting algorithm will generate a
barrier of hole points and interpolation points that bounds the entire hole region.

Grid after removing all exterior points. The exterior points are easily swept out after the hole boundary has been marked.

11 ADAPTIVE MESH REFINEMENT 72

Grid after marking (improper) interpolation. These improper interpolation points need only lie inside another grid.

Grid after marking all (proper) interpolation. We have attempted to interpolate discretization points on each grid from grids of
higher priority.

11 ADAPTIVE MESH REFINEMENT 73

Finished grid after removing excess interpolation points.

11 ADAPTIVE MESH REFINEMENT 74

11.3 Example: Valve

These figures show the grid for a valve at various stages in the overlap algorithm.

Grid after interpolation on boundaries.

Grid after cutting holes. Physical boundaries are used to cut holes in nearby grids. The hole cutting algorithm will generate a
barrier of hole points and interpolation points that bounds the entire hole region.

11 ADAPTIVE MESH REFINEMENT 75

Grid after removing all exterior points. The exterior points are easily swept out after the hole boundary has been marked.

Grid after marking (improper) interpolation. These improper interpolation points need only lie inside another grid.

11 ADAPTIVE MESH REFINEMENT 76

Grid after marking all (proper) interpolation.

Finished grid after removing excess interpolation points.

REFERENCES 77

References

[1] G. CHESSHIRE AND W. HENSHAW, Composite overlapping meshes for the solution of partial differential equations, J.
Comp. Phys., 90 (1990), pp. 1–64.

[2] W. HENSHAW, Mappings for Overture, a description of the Mapping class and documentation for many useful Mappings,
Research Report LA-UR-96-3469, Los Alamos National Laboratory, 1996.

[3] , Plotstuff: A class for plotting stuff from Overture, Research Report LA-UR-96-3893, Los Alamos National Labora-
tory, 1996.

Index
adaptive mesh refinement

ogen, 69
airfoil, 21

body of revolution, 32
boundary condition, 5

mixed boundary condition, 47
physical boundary, 5

boundary mismatch, 62
boundaryDiscretisationWidth, 67
building, 46

c-grid, 47
command file, 8
cutting holes

turning off, 6

grid generation, 1

h-grid, 47
hints, 52
hole cutting, 59

algorithm, 59
manual, 51
phantom, 51

hybrid grid, 23

interpolation, 6
explicit, 6
implicit, 6
improper, 59
improved quality, 65
proper, 59
redundant, 59
turning off, 6

mapping
AirFoilMapping, 21
transfinite interpolation, 21

orthographic, 26
overlapping grid algorithm, 59

phantom hole cutting, 51

refinement grids, 64
rocket, 46

share flag, 6

tips, 54
trouble shooting, 52

unstructured grid, 23
user defined mapping, 55

78

